constant_reconciliation
Bases: fabrication
The constant parameter reconciliation function.
It performs the constant parameter reconciliation, and returns the constant reconciled parameter matrix of shape (n, D). This class inherits from the reconciliation class (i.e., the fabrication class in the module directory).
...
Notes
As the simplest parameter reconciliation function, the constant parameter reconciliation projects any input parameters to constants (e.g., zeros or ones) as follows: $$ \begin{equation} \psi(\mathbf{w} | c) = c \cdot \mathbf{1}^{n \times D} = \mathbf{C} \in {R}^{n \times D}, \end{equation} $$ where the output matrix \(\mathbf{C}\) of size \(n \times D\) is filled with the provided constant \(c\).
For constant parameter reconciliation, the input parameter \(\mathbf{w}\) is not required, which together with its dimension hyper-parameter \(l\) can both be set to \textit{none} in implementation.
If the output constant \(\mathbf{C} = \mathbf{0}\) or \(\mathbf{C} = \mathbf{1}\), we can also name the functions as zero reconciliation and one reconciliation, respectively. Constant parameter reconciliation functions can accommodate outputs according to requirements.
Constant reconciliation contributes almost nothing to model learning since it involves no parameters, but it provides RPN with substantial flexibility in representing and designing many models.
Attributes:
Name | Type | Description |
---|---|---|
name |
str, default = 'constant_reconciliation'
|
Name of the reconciliation function. |
c |
float, default = 1.0
|
The constant value of the reconciliation function. |
Methods:
Name | Description |
---|---|
__init__ |
It initializes the parameter reconciliation function. |
calculate_l |
It calculates the length of required parameters. |
forward |
It implements the abstract forward method declared in the base reconciliation class. |
Source code in tinybig/reconciliation/basic_reconciliation.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
|
__init__(name='constant_c_reconciliation', c=1.0, *args, **kwargs)
The initialization method of the constant parameter reconciliation function.
It initializes a constant parameter reconciliation function object. This method will also call the initialization method of the base class as well. Since the constant parameter reconciliation doesn't require parameters, it will set the "require_parameters" as False in the initialization.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
str
|
Name of the constant parameter reconciliation function. |
'constant_c_reconciliation'
|
c |
float
|
The constant value of the reconciliation function |
1.0
|
Returns:
Type | Description |
---|---|
object
|
The constant parameter reconciliation function object. |
Source code in tinybig/reconciliation/basic_reconciliation.py
calculate_l(n, D)
The required parameter number calculation method.
It calculates the number of required learnable parameters, i.e., l, of the parameter reconciliation function based on the intermediate and output space dimensions, n and D. For constant parameter reconciliation, it doesn't require any learnable parameters, and this function will return the parameter number as 0 by default.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n |
int
|
The dimension of the output space. |
required |
D |
int
|
The dimension of the intermediate expansion space. |
required |
Returns:
Type | Description |
---|---|
int
|
The number of required learnable parameters. |
Source code in tinybig/reconciliation/basic_reconciliation.py
forward(n, D, w=None, device='cpu', *args, **kwargs)
The forward method of the parameter reconciliation function.
It applies the constant parameter reconciliation operation to the input parameter of length l, and returns the reconciled parameter matrix of shape (n, D) as follows: $$ \begin{equation} \psi(\mathbf{w} | c) = c \cdot \mathbf{1}^{n \times D} = \mathbf{C} \in {R}^{n \times D}. \end{equation} $$
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n |
int
|
The dimension of the output space. |
required |
D |
int
|
The dimension of the intermediate expansion space. |
required |
w |
Parameter
|
The learnable parameters of the model. For constant reconciliation, it is assigned with a default value None. |
None
|
device |
Device to perform the parameter reconciliation. |
'cpu'
|
Returns:
Type | Description |
---|---|
Tensor
|
The reconciled parameter matrix of shape (n, D). |