naive_normal_expansion
Bases: transformation
The naive normal data expansion function.
It performs the naive normal probabilistic expansion of the input vector, and returns the expansion result. The class inherits from the base expansion class (i.e., the transformation class in the module directory).
...
Notes
For input vector \(\mathbf{x} \in R^m\), its naive normal probabilistic expansion can be represented as follows: $$ \begin{equation} \kappa(\mathbf{x} | \boldsymbol{\theta}) = \left[ \log P\left({\mathbf{x}} | \theta_1\right), \log P\left({\mathbf{x} } | \theta_2\right), \cdots, \log P\left({\mathbf{x} } | \theta_d\right) \right] \in {R}^D \end{equation} $$ where \(P\left({{x}} | \theta_d\right)\) denotes the probability density function of the normal distribution with hyper-parameter \(\theta_d\), $$ \begin{equation} P\left(x | \theta_d\right) = P(x| \mu, \sigma) = \frac{1}{\sigma \sqrt{2 \pi}}\exp^{-\frac{1}{2} (\frac{x-\mu}{\sigma})^2}. \end{equation} $$
For naive normal probabilistic expansion, its output expansion dimensions will be \(D = md\), where \(d\) denotes the number of provided distribution hyper-parameters.
By default, the input and output can also be processed with the optional pre- or post-processing functions in the gaussian rbf expansion function.
Attributes:
Name | Type | Description |
---|---|---|
name |
str, default = 'naive_normal_expansion'
|
The name of the naive normal expansion function. |
Methods:
Name | Description |
---|---|
__init__ |
It performs the initialization of the expansion function. |
calculate_D |
It calculates the expansion space dimension D based on the input dimension parameter m. |
forward |
It implements the abstract forward method declared in the base expansion class. |
Source code in tinybig/expansion/probabilistic_expansion.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
|
__init__(name='naive_normal_expansion', *args, **kwargs)
The initialization method of the naive normal probabilistic expansion function.
It initializes a naive normal probabilistic expansion object based on the input function name. This method will also call the initialization method of the base class as well.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
The name of the naive normal expansion function. |
'naive_normal_expansion'
|
Source code in tinybig/expansion/probabilistic_expansion.py
calculate_D(m)
The expansion dimension calculation method.
It calculates the intermediate expansion space dimension based on the input dimension parameter m. For the naive normal probabilistic expansion function, the expansion space dimension will be $$ D = m d, $$ where \(d\) denotes the number of provided distribution hyper-parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
m |
int
|
The dimension of the input space. |
required |
Returns:
Type | Description |
---|---|
int
|
The dimension of the expansion space. |
Source code in tinybig/expansion/probabilistic_expansion.py
forward(x, device='cpu', *args, **kwargs)
The forward method of the naive normal probabilistic expansion function.
It performs the naive normal probabilistic expansion of the input data and returns the expansion result as $$ \begin{equation} \kappa(\mathbf{x} | \boldsymbol{\theta}) = \left[ \log P\left({\mathbf{x}} | \theta_1\right), \log P\left({\mathbf{x} } | \theta_2\right), \cdots, \log P\left({\mathbf{x} } | \theta_d\right) \right] \in {R}^D. \end{equation} $$
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
Tensor
|
The input data vector. |
required |
device |
The device to perform the data expansion. |
'cpu'
|
Returns:
Type | Description |
---|---|
Tensor
|
The expanded data vector of the input. |