Skip to content

inverse_quadratic_rbf_expansion

Bases: gaussian_rbf_expansion

The inverse quadratic rbf data expansion function.

It performs the inverse quadratic rbf expansion of the input vector, and returns the expansion result. The class inherits from the base expansion class (i.e., the transformation class in the module directory).

...

Notes

For input vector \(\mathbf{x} \in R^m\), its inverse quadratic rbf expansion with \(d\) fixed points can be represented as follows: $$ \begin{equation} \kappa(\mathbf{x}) = {\varphi} (\mathbf{x} | \mathbf{c}) = \left[ \varphi (\mathbf{x} | c_1), \varphi (\mathbf{x} | c_2), \cdots, \varphi (\mathbf{x} | c_d) \right] \in {R}^D, \end{equation} $$ where the sub-vector element \({\varphi} (x | \mathbf{c})\) can be defined as follows: $$ \begin{equation} {\varphi} (x | \mathbf{c}) = \left[ \varphi (x | c_1), \varphi (x | c_2), \cdots, \varphi (x | c_d) \right] \in {R}^d. \end{equation} $$ and value \(\varphi (x | c)\) is defined as: $$ \begin{equation} \varphi (x | c) = \frac{1}{1 + (\epsilon (x - c))^2}. \end{equation} $$

For inverse quadratic rbf expansion, its output expansion dimensions will be \(D = md\).

By default, the input and output can also be processed with the optional pre- or post-processing functions in the inverse quadratic rbf expansion function.

Attributes:

Name Type Description
name str, default = 'inverse_quadratic_rbf_expansion'

Name of the expansion function.

base_range tuple | list, default = (-1, 1)

Input value range.

num_interval int, default = 10

Number of intervals of the input value range.

epsilon float, default = 1.0

The rbf function parameter.

base Tensor

The partition of value range into intervals, i.e., the vector \(\mathbf{c}\) in the above equation.

Methods:

Name Description
__init__

It performs the initialization of the expansion function.

calculate_D

It calculates the expansion space dimension D based on the input dimension parameter m.

forward

It implements the abstract forward method declared in the base expansion class.

Source code in tinybig/expansion/rbf_expansion.py
class inverse_quadratic_rbf_expansion(gaussian_rbf_expansion):
    r"""
    The inverse quadratic rbf data expansion function.

    It performs the inverse quadratic rbf expansion of the input vector, and returns the expansion result.
    The class inherits from the base expansion class (i.e., the transformation class in the module directory).

    ...

    Notes
    ----------
    For input vector $\mathbf{x} \in R^m$, its inverse quadratic rbf expansion with $d$ fixed points can be represented as follows:
    $$
    \begin{equation}
        \kappa(\mathbf{x}) = {\varphi} (\mathbf{x} | \mathbf{c}) = \left[ \varphi (\mathbf{x} | c_1), \varphi (\mathbf{x} | c_2), \cdots, \varphi (\mathbf{x} | c_d) \right] \in {R}^D,
    \end{equation}
    $$
    where the sub-vector element ${\varphi} (x | \mathbf{c})$ can be defined as follows:
    $$
        \begin{equation}
            {\varphi} (x | \mathbf{c}) = \left[ \varphi (x | c_1), \varphi (x | c_2), \cdots, \varphi (x | c_d) \right] \in {R}^d.
        \end{equation}
    $$
    and value $\varphi (x | c)$ is defined as:
    $$
        \begin{equation}
            \varphi (x | c) = \frac{1}{1 + (\epsilon (x - c))^2}.
        \end{equation}
    $$

    For inverse quadratic rbf expansion, its output expansion dimensions will be $D = md$.

    By default, the input and output can also be processed with the optional pre- or post-processing functions
    in the inverse quadratic rbf expansion function.

    Attributes
    ----------
    name: str, default = 'inverse_quadratic_rbf_expansion'
        Name of the expansion function.
    base_range: tuple | list, default = (-1, 1)
        Input value range.
    num_interval: int, default = 10
        Number of intervals of the input value range.
    epsilon: float, default = 1.0
        The rbf function parameter.
    base: torch.Tensor
        The partition of value range into intervals, i.e., the vector $\mathbf{c}$ in the above equation.

    Methods
    ----------
    __init__
        It performs the initialization of the expansion function.

    calculate_D
        It calculates the expansion space dimension D based on the input dimension parameter m.

    forward
        It implements the abstract forward method declared in the base expansion class.

    """
    def __init__(self, name='inverse_quadratic_rbf', base_range=(-1, 1), num_interval=10, epsilon=1.0, base=None, *args, **kwargs):
        r"""
        The initialization method of the inverse quadratic rbf expansion function.

        It initializes an inverse quadratic rbf expansion object based on the input function name.
        This method will also call the initialization method of the base class as well.

        Parameters
        ----------
        name: str, default = 'inverse_quadratic_rbf'
            The name of the inverse quadratic rbf expansion function.
        base_range: tuple | list, default = (-1, 1)
            Input value range.
        num_interval: int, default = 10
            Number of intervals partitioned by the fixed points.
        epsilon: float, default = 1.0
            The rbf function parameter.
        base: Tensor, default = None
            The partition of value range into intervals, i.e., the vector $\mathbf{c}$ in the above equation.

        """
        super().__init__(name=name, base_range=base_range, num_interval=num_interval, epsilon=epsilon, base=base, *args, **kwargs)

    def forward(self, x: torch.Tensor, device='cpu', *args, **kwargs):
        r"""
        The forward method of the data expansion function.

        It performs the inverse quadratic rbf data expansion of the input data and returns the expansion result as
        $$
            \begin{equation}
                \kappa(\mathbf{x}) = {\varphi} (\mathbf{x} | \mathbf{c}) = \left[ \varphi (\mathbf{x} | c_1), \varphi (\mathbf{x} | c_2), \cdots, \varphi (\mathbf{x} | c_d) \right] \in {R}^D,
            \end{equation}
        $$
        where vector $\mathbf{c}$ is the fixed point base tensor initialized above.


        Parameters
        ----------
        x: torch.Tensor
            The input data vector.
        device: str, default = 'cpu'
            The device to perform the data expansion.

        Returns
        ----------
        torch.Tensor
            The expanded data vector of the input.
        """
        x = self.pre_process(x=x, device=device)
        if self.base is None:
            self.initialize_base(device=device, *args, **kwargs)
        assert x.dim() == 2
        expansion = (1/(1+((x[..., None] - self.base) * self.epsilon) ** 2)).view(x.size(0), -1)

        assert self.calculate_D(m=x.size(1)) == expansion.size(1)
        return self.post_process(x=expansion, device=device)

__init__(name='inverse_quadratic_rbf', base_range=(-1, 1), num_interval=10, epsilon=1.0, base=None, *args, **kwargs)

The initialization method of the inverse quadratic rbf expansion function.

It initializes an inverse quadratic rbf expansion object based on the input function name. This method will also call the initialization method of the base class as well.

Parameters:

Name Type Description Default
name

The name of the inverse quadratic rbf expansion function.

'inverse_quadratic_rbf'
base_range

Input value range.

(-1, 1)
num_interval

Number of intervals partitioned by the fixed points.

10
epsilon

The rbf function parameter.

1.0
base

The partition of value range into intervals, i.e., the vector \(\mathbf{c}\) in the above equation.

None
Source code in tinybig/expansion/rbf_expansion.py
def __init__(self, name='inverse_quadratic_rbf', base_range=(-1, 1), num_interval=10, epsilon=1.0, base=None, *args, **kwargs):
    r"""
    The initialization method of the inverse quadratic rbf expansion function.

    It initializes an inverse quadratic rbf expansion object based on the input function name.
    This method will also call the initialization method of the base class as well.

    Parameters
    ----------
    name: str, default = 'inverse_quadratic_rbf'
        The name of the inverse quadratic rbf expansion function.
    base_range: tuple | list, default = (-1, 1)
        Input value range.
    num_interval: int, default = 10
        Number of intervals partitioned by the fixed points.
    epsilon: float, default = 1.0
        The rbf function parameter.
    base: Tensor, default = None
        The partition of value range into intervals, i.e., the vector $\mathbf{c}$ in the above equation.

    """
    super().__init__(name=name, base_range=base_range, num_interval=num_interval, epsilon=epsilon, base=base, *args, **kwargs)

forward(x, device='cpu', *args, **kwargs)

The forward method of the data expansion function.

It performs the inverse quadratic rbf data expansion of the input data and returns the expansion result as $$ \begin{equation} \kappa(\mathbf{x}) = {\varphi} (\mathbf{x} | \mathbf{c}) = \left[ \varphi (\mathbf{x} | c_1), \varphi (\mathbf{x} | c_2), \cdots, \varphi (\mathbf{x} | c_d) \right] \in {R}^D, \end{equation} $$ where vector \(\mathbf{c}\) is the fixed point base tensor initialized above.

Parameters:

Name Type Description Default
x Tensor

The input data vector.

required
device

The device to perform the data expansion.

'cpu'

Returns:

Type Description
Tensor

The expanded data vector of the input.

Source code in tinybig/expansion/rbf_expansion.py
def forward(self, x: torch.Tensor, device='cpu', *args, **kwargs):
    r"""
    The forward method of the data expansion function.

    It performs the inverse quadratic rbf data expansion of the input data and returns the expansion result as
    $$
        \begin{equation}
            \kappa(\mathbf{x}) = {\varphi} (\mathbf{x} | \mathbf{c}) = \left[ \varphi (\mathbf{x} | c_1), \varphi (\mathbf{x} | c_2), \cdots, \varphi (\mathbf{x} | c_d) \right] \in {R}^D,
        \end{equation}
    $$
    where vector $\mathbf{c}$ is the fixed point base tensor initialized above.


    Parameters
    ----------
    x: torch.Tensor
        The input data vector.
    device: str, default = 'cpu'
        The device to perform the data expansion.

    Returns
    ----------
    torch.Tensor
        The expanded data vector of the input.
    """
    x = self.pre_process(x=x, device=device)
    if self.base is None:
        self.initialize_base(device=device, *args, **kwargs)
    assert x.dim() == 2
    expansion = (1/(1+((x[..., None] - self.base) * self.epsilon) ** 2)).view(x.size(0), -1)

    assert self.calculate_D(m=x.size(1)) == expansion.size(1)
    return self.post_process(x=expansion, device=device)