gaussian_rbf_expansion
Bases: transformation
The gaussian rbf data expansion function.
It performs the gaussian rbf expansion of the input vector, and returns the expansion result. The class inherits from the base expansion class (i.e., the transformation class in the module directory).
...
Notes
For input vector \(\mathbf{x} \in R^m\), its gaussian rbf expansion with \(d\) fixed points can be represented as follows: $$ \begin{equation} \kappa(\mathbf{x}) = {\varphi} (\mathbf{x} | \mathbf{c}) = \left[ \varphi (\mathbf{x} | c_1), \varphi (\mathbf{x} | c_2), \cdots, \varphi (\mathbf{x} | c_d) \right] \in {R}^D, \end{equation} $$ where the sub-vector element \({\varphi} (x | \mathbf{c})\) can be defined as follows: $$ \begin{equation} {\varphi} (x | \mathbf{c}) = \left[ \varphi (x | c_1), \varphi (x | c_2), \cdots, \varphi (x | c_d) \right] \in {R}^d. \end{equation} $$ and value \(\varphi (x | c)\) is defined as: $$ \begin{equation} \varphi (x | c) = \exp(-(\epsilon (x - c) )^2). \end{equation} $$
For gaussian rbf expansion, its output expansion dimensions will be \(D = md\).
By default, the input and output can also be processed with the optional pre- or post-processing functions in the gaussian rbf expansion function.
Attributes:
Name | Type | Description |
---|---|---|
name |
str, default = 'gaussian_rbf_expansion'
|
Name of the expansion function. |
base_range |
tuple | list, default = (-1, 1)
|
Input value range. |
num_interval |
int, default = 10
|
Number of intervals partitioned by the fixed points. |
epsilon |
float, default = 1.0
|
The rbf function parameter. |
base |
Tensor
|
The partition of value range into intervals, i.e., the vector \(\mathbf{c}\) in the above equation. |
Methods:
Name | Description |
---|---|
__init__ |
It performs the initialization of the expansion function. |
calculate_D |
It calculates the expansion space dimension D based on the input dimension parameter m. |
forward |
It implements the abstract forward method declared in the base expansion class. |
Source code in tinybig/expansion/rbf_expansion.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
|
__init__(name='gaussian_rbf_expansion', base_range=(-1, 1), num_interval=10, epsilon=1.0, base=None, *args, **kwargs)
The initialization method of the gaussian rbf expansion function.
It initializes a gaussian rbf expansion object based on the input function name. This method will also call the initialization method of the base class as well.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
The name of the gaussian rbf expansion function. |
'gaussian_rbf_expansion'
|
|
base_range |
Input value range. |
(-1, 1)
|
|
num_interval |
Number of intervals partitioned by the fixed points. |
10
|
|
epsilon |
The rbf function parameter. |
1.0
|
|
base |
The partition of value range into intervals, i.e., the vector \(\mathbf{c}\) in the above equation. |
None
|
Source code in tinybig/expansion/rbf_expansion.py
calculate_D(m)
The expansion dimension calculation method.
It calculates the intermediate expansion space dimension based on the input dimension parameter m. For the gaussian rbf expansion function, the expansion space dimension will be $$ D = m d, $$ where \(d\) denotes the number of intervals of the input value range.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
m |
int
|
The dimension of the input space. |
required |
Returns:
Type | Description |
---|---|
int
|
The dimension of the expansion space. |
Source code in tinybig/expansion/rbf_expansion.py
forward(x, device='cpu', *args, **kwargs)
The forward method of the data expansion function.
It performs the gaussian rbf data expansion of the input data and returns the expansion result as $$ \begin{equation} \kappa(\mathbf{x}) = {\varphi} (\mathbf{x} | \mathbf{c}) = \left[ \varphi (\mathbf{x} | c_1), \varphi (\mathbf{x} | c_2), \cdots, \varphi (\mathbf{x} | c_d) \right] \in {R}^D, \end{equation} $$ where vector \(\mathbf{c}\) is the fixed point base tensor initialized above.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
Tensor
|
The input data vector. |
required |
device |
The device to perform the data expansion. |
'cpu'
|
Returns:
Type | Description |
---|---|
Tensor
|
The expanded data vector of the input. |
Source code in tinybig/expansion/rbf_expansion.py
initialize_base(device='cpu', base_range=None, num_interval=None)
The fixed point base initialization method.
It initializes the fixed point base tensor, which partitions the value range into equal-length intervals. The initialized base tensor corresponds to the fixed point vector \(\mathbf{c}\) mentioned in the above equation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device |
The device to host the base tensor. |
'cpu'
|
|
base_range |
Input value range. |
None
|
|
num_interval |
Number of intervals partitioned by the fixed points. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
The fixed point base tensor. |