manifold
Bases: object
Base class for manifold learning.
This class provides a generic interface for manifold learning algorithms, with methods to set the number of neighbors and components and to perform dimensionality reduction using a specified manifold learning technique.
Attributes:
Name | Type | Description |
---|---|---|
name |
str
|
The name of the manifold learning method. |
n_neighbors |
int
|
The number of neighbors to consider for the manifold learning algorithm. |
n_components |
int
|
The number of components for dimensionality reduction. |
model |
object
|
The manifold learning model to be used. |
Methods:
Name | Description |
---|---|
get_n_neighbors |
Get the number of neighbors used in the manifold learning algorithm. |
set_n_neighbors |
Set the number of neighbors and reinitialize the model. |
get_n_components |
Get the number of components for dimensionality reduction. |
set_n_components |
Set the number of components and reinitialize the model. |
forward |
Apply the manifold learning algorithm to reduce the dimensionality of the input data. |
fit_transform |
Perform dimensionality reduction on the input data. |
init_model |
Abstract method to initialize the manifold learning model. |
Source code in tinybig/koala/manifold/manifold.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
|
__call__(X, device='cup', *args, **kwargs)
Apply the manifold learning algorithm to the input data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
Union[ndarray, Tensor]
|
The input data for dimensionality reduction. |
required |
device
|
str
|
The device to use ('cup' or 'cpu'). Default is 'cup'. |
'cup'
|
*args
|
Additional arguments. |
()
|
|
**kwargs
|
Additional arguments. |
()
|
Returns:
Type | Description |
---|---|
Union[ndarray, Tensor]
|
The transformed data. |
Source code in tinybig/koala/manifold/manifold.py
__init__(name='base_manifold', n_neighbors=5, n_components=2, *args, **kwargs)
Initialize the manifold learning class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
The name of the manifold learning method. Default is 'base_manifold'. |
'base_manifold'
|
n_neighbors
|
int
|
The number of neighbors to consider. Default is 5. |
5
|
n_components
|
int
|
The number of components for dimensionality reduction. Default is 2. |
2
|
*args
|
Additional arguments for initialization. |
()
|
|
**kwargs
|
Additional arguments for initialization. |
()
|
Source code in tinybig/koala/manifold/manifold.py
fit_transform(X, device='cup', *args, **kwargs)
Perform dimensionality reduction on the input data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
Union[ndarray, Tensor]
|
The input data for dimensionality reduction. |
required |
device
|
str
|
The device to use ('cup' or 'cpu'). Default is 'cup'. |
'cup'
|
*args
|
Additional arguments. |
()
|
|
**kwargs
|
Additional arguments. |
()
|
Returns:
Type | Description |
---|---|
Union[ndarray, Tensor]
|
The transformed data. |
Source code in tinybig/koala/manifold/manifold.py
forward(X, device='cup', *args, **kwargs)
Perform dimensionality reduction on the input data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
Union[ndarray, Tensor]
|
The input data for dimensionality reduction. |
required |
device
|
str
|
The device to use ('cup' or 'cpu'). Default is 'cup'. |
'cup'
|
*args
|
Additional arguments. |
()
|
|
**kwargs
|
Additional arguments. |
()
|
Returns:
Type | Description |
---|---|
Union[ndarray, Tensor]
|
The transformed data. |
Source code in tinybig/koala/manifold/manifold.py
get_n_components()
Get the number of components for dimensionality reduction.
Returns:
Type | Description |
---|---|
int
|
The number of components. |
get_n_neighbors()
Get the number of neighbors used in the manifold learning algorithm.
Returns:
Type | Description |
---|---|
int
|
The number of neighbors. |
init_model()
abstractmethod
set_n_components(n_components)
Set the number of components and reinitialize the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_components
|
int
|
The new number of components. |
required |
Source code in tinybig/koala/manifold/manifold.py
set_n_neighbors(n_neighbors)
Set the number of neighbors and reinitialize the model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_neighbors
|
int
|
The new number of neighbors. |
required |