prod_compression
              Bases: metric_compression
The prod metric based compression function.
It performs the data compression based on provided prod metric.
...
Notes
Formally, given a data instance \(\mathbf{x} \in R^m\) and a provided metric \(\phi: {R}^m \to {R}^{d_{\phi}}\), which transforms it into a dense representation of length \(d_{\phi}\), we can represent the prod metric based compression function as follows:
\[
    \begin{equation}
    \kappa(\mathbf{x}) = prod(\mathbf{x}) \in {R}^{d}.
    \end{equation}
\]
For the prod metric studied in this project, the output is typically a scalar, i.e., the dimension \(d = d_{\phi} = 1\).
Attributes:
| Name | Type | Description | 
|---|---|---|
| metric | Callable[[Tensor], Tensor] | The metric compression metric. | 
| name | str, default = 'prod_compression' | Name of the prod compression function. | 
Methods:
| Name | Description | 
|---|---|
| __init__ | It performs the initialization of the prod compression function. | 
| calculate_D | It calculates the compression space dimension d based on the input dimension parameter m. | 
| forward | It implements the abstract forward method to define the compression function. | 
Source code in tinybig/compression/metric_based_compression.py
                
            __init__(name='prod_compression', *args, **kwargs)
    The initialization method of the prod metric based compression function.
It initializes the compression function based on the provided prod metric.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| name | str | Name of the compression function. | 'prod_compression' | 
Returns:
| Type | Description | 
|---|---|
| transformation | The prod metric based compression function. |